

Navy Techval Program

Techval

FUPWG

October 20, 2010

Rapid City, SD

Paul Kistler, PE CEM

NAVFAC Engineering Service Center

Port Hueneme CA

Navy Techval Program

Technologies

- Work Station Specific Lighting
- CO2 HVAC control
 - ➤ What is it, how does it work?
 - ➤ Data from projects
 - ➤ Where does it work best?

Work Station Specific Lighting

What Is It?

- 1. Pendant light used mainly in open cubicles
- 2. Each cubicle has own dedicated fixture
- 3. One up light
- 4. Two down lights
- 5. Down light dimmed by the occupant
- 6. Up light on time clock
- 7. Occupancy sensor
- 8. Day light sensor
- 9. T5 5000K
- 10.Does not replace task lighting

Projected Savings

- 1. Projected payback is 17 years
- 2. Projected pay back on incremental cost is 3 to 4 years
- 3. Recent projects indicate a total savings of 70% lighting energy use
- 4. Most of the savings due to occupancy sensor

Work Station Specific Lighting

Challenges

- 1. Building new in 1996.
- 2. Originally 3 lamp T8 2 X 4 recessed troffer, est. 50 FC
- 3. Nine foot ceilings
- 4. During California energy crises, severely delamped
 - a) 21 fixtures with 0 lamps
 - b) 23 fixtures with 1 lamp
 - c) 10 fixtures with 2 lamps
 - d) 0 fixtures with 3 lamps
 - e) Average 12 FC, 0.4 min, 42 max
- 5. New occupants relamped their area and changed cubicle spaces and heights
- 6. Timeclock, on 0600, off 1800. Reset 2 hours.
- 7. Two banks of lights per circuit

The lighting level is set at the preferred level for the work that I do

The overhead lighting makes it difficult for me to read printed material

The overhead lighting is acceptable

The overhead lighting is too dim for the work that I do

The overhead lighting allows me to see comfortably $% \left(\mathbf{r}\right) =\left(\mathbf{r}\right)$

The overhead lighting is pleasant to work under

The overhead lighting is too high for the work that I do

Overall, how would you rate the existing overhead lighting?

Work Station Specific Lighting

Issues

- Mounting height
 - •20" from ceiling to top of fixture
 - •7'1" from floor to bottom of fixture
 - Hot spots on ceiling
 - Fire sprinklers
- Uniformity in passageways
- Shadows on work area
- Commissioning
 - Not a DIY
- Uplight
 - Hot spots
 - Glare
- Navy IT security
- Change out remaining lighting to 5000K

Lighting Circuits 1 & 2 Power Use Monday, 6/7/10 - Sunday, 6/20/10

Time

Lighting Circuits 1 & 2 Power Use 6/18/10

Lighting Circuits 1 & 2 Power Use 8/13/10

Tabulated Data

Original		
	Circuit 1	Circuit 2
Min W	6	12
Max W	1609	1605
Ave W	652	729
Post Install		
	Circuit 1	Circuit 2
Min W	248	219
Max W	1441	1165
Ave W	545	454

Tabulated Illumination Data After New Lighting Install Min 6 FC Max 32 FC Ave 16 FC

carol.jones@pnl.gov

www.lightright.org

www.lightingsolutions.energy.gov

Work Station Specific Lighting

Where to use

- 1. Open cubicles
- 2. Cubicles are frequently unoccupied
- 3. Daylight in outer zones
- 4. Large number of people that perform various visual tasks
- 5. Various age ranges

CO₂ HVAC Control

- How can you determine if active CO₂ control via your ventilation system is a legitimate option for your facility?
- What are the acceptable levels of ventilation and how are they determined?
- Why should you bother? economic and energy incentives
- Three case studies Virginia, Tennessee,
 Washington

CO₂ HVAC Control

What is it?

Reduces the amount of outside air brought into a building based on the CO2 level in the building.

Is CO₂ Control for You?

- Does your HVAC system incorporate an economizer control system?
- Do summertime temperatures get above 85 degrees?
- Do wintertime temperatures get below 45 degrees?
- •Is the cost of heating fuel greater than \$11.50/MBTU?
- •Is the cost of electricity greater than \$0.08/kWh?
- •Is there less than 30 ft²/person in the HVAC zone when fully occupied?
- •Is the HVAC zone less than fully occupied 40% or more of the time?

Acceptable Levels of Ventilation

ASHRAE Standard 62

- -Sets minimum outside air volumetric flow rates (cfm) based upon number of occupants within space, square footage of space, and effectiveness of the ventilation system serving the space
- -Outside air amounts target the amount necessary to maintain CO₂ levels within the space at no more than 700 ppm above outside air levels (Appendix C of Standard 62)
- UFC Guidelines Federal
 - –Primarily refer to ASHRAE standards
- State and Local Guidelines

Why bother? – economic and energy incentives

- Conditioning of ventilation air can account for as much as 50% of the energy requirements of HVAC systems in many climates
- Any reduction in the amount of ventilation air to be processed results in a decrease in energy consumption
- Any decrease in energy consumption results in an economic savings

Three Case Studies

- Virginia Naval Amphibious Base Little Creek
 - -Norfolk, VA
 - -Building 3607, Galley
- Tennessee Naval Support Activity, Mid-South
 - -Millington, TN
 - -Building 767, Conference Center
- Washington Naval Base Kitsap
 - -Bremerton, WA
 - -Building 1017, Gymnasium

Virginia - Little Creek Building 3607 Galley

Outside Air Calculations per ASHRAE 62.1-2004

0013	IDE AIR	CAL	CULATI	JNJ.	ASHKA	1E 02	-2004	ANE	- 0. F	LOFL	
Utilization o	f Equation	11: Tayl	or, May 200	6, "CO2 I	Based DV0	Using	62.1-200	04", ASI	HRAE Jo	urnal Aı	ticle.
	Total outs	ide air fl	ow at the a	ir handle	er based o	n CO2	concent	ration (differenc	e	
V'ot =		Ra*Az			EQ 11						
	Ez -	Rp *	(Cr-Coa)		LQIII						
		840	0*m								
Calul	ation of en	ace CO	2 levels and	volume	tric flowrs	te of O	Δ at min	and m	av occii	nancv	
Galui	ation or sp	ace co	z ieveis and	Volume	tric nowre	1000		and m	ax occu	pancy.	
To determine l	MAX CO2 I	use EQ.	13 Taylor, N	ay 2006	ASHRAE .	Journal					
		8400*	Fz*m								
Cr =	Coa +	Rp +	Ra*Az		EQ 13						
		Kþ .	Pz								
		l ittle (reek Bldg.	3607 Fr	listed Din	ina ∆⊔	U-1 & A	HU-2			
	MIN	MAX	ek blug.	5507, EI	mateu Dili	my, An	5-1 G A	2			
INPUT	VARIABLE		Bold valu	es with v	yellow hig	hlight a	re input	s			
Ra	0.18								Table 2		
Az	1508		Room area ventilation rate, (cfm/ SF), ASHRAE 62, Table 2 Occupied Square footage (SF)								
Rp	7.5		Ventilation rate per person (cfm/person)., ASHRAE 62, Table 2								
Pz	0			Number of people in the occupied space							
Occupiable So											
	STANTS	LLOO	Bold border:blue highlight = values based on site conditions								
Ez	1	1			entilation s				_		
Coa	400	_			(ppm), Ac					013	
constant	8400				of 0.0084 of					n/cfm)	
met	1	1			on of CO2						state
								,,			
CALCULA	TED OUTP	UTS									
V'ot	271	1021	Calculated	by EQ.	11, OA vol	umetric	flowrate,	(CFM)			
OA Space	271	271	OA requir	ed for the	space sq	uare foo	tage, (C	FM)			
OA People	0	750	OA required for the people occupying the space, (CFM)								
Total OA	271	1021	Calculated	OA vold	metric flow	rate, (C	FM)				
DEDODI	INC V										
KEPUKI	ING VALO	MAX	These va	lues ar	e applie	d to be	oth AH	U-1 ar	d AHU	-2	
Cr, Room (O	_				trations, E						nal

Total OSA for space with:

0 Occupants – 271 cfm 100 Occupants – 1021 cfm

Performance Results - Virginia

- Occupancy Schedule
- CO2 Measured Concentration Levels
- Ventilation Air Cooling Load
- Ventilation Air Heating Load
- Ventilation Air Flow Rate

Occupancy Schedule - Virginia

CO₂ Measured Concentration Levels - Virginia

Ventilation Air Cooling Load - Virginia

Ventilation Air Heating Load - Virginia

Ventilation Air Flow Rates - Virginia

Performance Results – All Sites

- •CO₂ Controlled Hours
- Savings per CO₂ Controlled Hour
- Annual Savings
- Payback in Years non weather corrected
- Energy Manager Decision Calculator
- Test Site Evaluation Scores
- Payback based on Evaluation Scores

CO₂ Controlled Hours – All Sites

Savings per CO₂ Controlled Hour – **All Sites**

Annual Savings – All Sites

Payback in Years – All Sites Non Weather Corrected

	Total	Annual Total	Payback (yrs)	
	Installed Cost	Savings		
Little Creek	\$ 18,373	\$ 7,427	2.5	
Mid-South	\$ 35,500	\$ 5,682	6.3	
Kitsap	\$ 19,685	\$ 348	56.6	

Energy Manager Decision CalculatorShould I Install or Not?

CO ₂ HVAC Controls Decision Calculator							
	Score						
Variable	1	2	3	4	5		
CDD	<1000	1000 - 1250	1250 - 1750	1750 - 2000	>2000		
HDD	<3000	3000 - 4000	4000 - 5000	5000 - 6000	>6000		
Cost of heating fuel (per MBTU)	<\$11	\$11 - \$11.50	\$11.50 - \$12	\$12 - \$12.50	>\$12.50		
Cost of Electricity (per kWh)	<5¢	5¢ - 6¢	8¢ - 9¢	7¢ - 10¢	>10¢		
Efficiency of Heating System	>75%	65% - 75%	55% - 65%	45% - 55%	<45%		
COP of Cooling System	>5	4 - 5	3 - 4	2 - 3	<2		
Max SF/person in HVAC zone	>60	50 - 60	30 - 50	20 - 30	<20		
% of time zone < 50% occupied	<25%	25% - 40%	40% - 55%	55% - 75%	>75%		

- If the total score is <19, the candidate facility is not a good candidate for this technology.
- If the total score is 19 25, it is definitely worth further investigation.
- If the total score is > 26, it is a strong indicator of a good candidate for this technology.

Test Site Evaluation Scores

•For the three sites included in this evaluation, the scores are:

Variable	Kitsap		Little	Creek	Mid-South		
	Value	Score	Value	Score	Value	Score	
CDD	393	1	2108	5	2094	5	
HDD	4784	3	3066	2	3542	2	
Cost of heating fuel (per MBTU)	\$10.51	1	\$12.08	4	\$12.41	5	
Cost of Electricity (per kWh)	\$0.04	1	\$0.03	1	\$0.09	4	
Efficiency of Heating System	0.8%	1	0.35%	5	0.8%	1	
COP of Cooling System	3.5	3	3.5	3	3.5	3	
Max SF/person in HVAC zone	100	1	15	5	20	4	
% of time zone < 50% occupied	0.25%	1	0.8%	5	0.6%	4	
Totals		12		30		28	

Payback Based on Evaluation Score

CO2 HVAC Control Maintenance Issues

- Recalibrate every 5 years
- Internal algorithm in each sensor to minimize sensor drift between recalibrations
- \$500 for recalibration kit

Contact Information

Paul Kistler P.E. C.E.M.
Mechanical Engineer
NAVFAC Engineering Service Center
1100 23rd Ave.
Port Hueneme CA 93043
(805) 982-1387
Paul.kistler@navy.mil

The lighting fixtures in the general office area around my workspace are nice-looking.

Face to face conversations

"Burning" or tired eyes after using computer extensively

